[LINK] "Closing in on Alpha Centauri"
Apr. 20th, 2012 10:44 pmCentauri Dreams' Paul Gilster reports on the search for Earth-size--and potentially Earth-like--planets orbiting one of the stars of Alpha Centauri, nearest star system to our own. Alpha Centauri A and B are both broadly Sun-like stars, A brighter than B, are roughly as old as our sun, and computer models suggest that rocky planets could form around the two stars and enjoy stable orbits. According to Gilster, the discovery is just a matter of time and money.
A warm and cozy planet around the K-class Centauri B would be just the ticket, and the planet hunt continues. One thing we’ve learned in the past decade is that neither Centauri A or B is orbited by a gas giant — planets of this size should have shown up in the data by now. We’ve also learned that stable orbits reach out maybe 2 AU from either star. Remember that while Centauri A and B are separated by almost 40 AU at their widest point, they close to within 11 AU, thus disrupting outer orbits, as demonstrated by computer simulations. We should expect planets, if they exist, to be no further out than the main asteroid belt in our own system.
Debra Fischer (Yale University) has been working on the Alpha Centauri problem at Cerro Tololo (Chile) in addition to her efforts at improving instrument sensitivity for planet hunting at the Keck and Lick observatories. The goal is to reach the precision needed to turn up planets the size of the Earth with radial velocity methods. If we’re going to get a Centauri detection, odds are it favors Centauri B because A does not seem to be as stable as B, and the latter is more likely to be the first to yield what Fischer calls the ‘tiny whisper’ that would flag an Earth-like world. Usefully, the 79 degree orbital plane of these stars means that planets in this system, assuming they share this tilt, should be generating a reflex velocity close to the line of sight from the Earth.
Radial velocity methods, in other words, should work here if we can attain sufficient sensitivity. The detection effort calls for telescope time at the Cerro Tololo Inter-American Observatory this spring and summer, and The Planetary Society is campaigning to raise money to support the effort. What Fischer needs is 20 nights of observing time, but the team’s NASA and NSF grants cannot be used to pay for telescope time, which at Cerro Tololo runs to $1650 per night. A total of $33,000 will do it, then, money the community should be able to raise. Have a look at the Planetary Society’s donation page and let’s see if we can’t make this happen.
Anyone involved with The Planetary Society is probably already aware of Fischer’s work with astronomer and Tau Zero practitioner Geoff Marcy (UC-Berkeley) on FINDS Exo-Earths (Fiber-optic Improved Next generation Doppler Search for Exo-Earths). The collaboration has resulted in a high-end optical system installed on the 3-meter Lick Observatory telescope and is now feeding the FINDS 2 effort to provide advanced optics for the Keck Observatory in Hawaii. Marcy and Fischer are working with a fiber optics array that adjusts light entering the telescope’s spectrometer and an adaptive optics system that offers the best signal to noise ratio.
FINDS worked out well at the Lick Observatory, improving the ability to detect Doppler velocities from the pre-existing 5 meters per second down to the 1 meter per second range, allowing us to detect smaller planets. Fischer and Marcy are hopeful of attaining precisions down to 0.5 meters per second with their work at Keck, which should get us into the range of Earth-sized planets. FINDS 2 will then be used with Keck to provide follow-up data about planets found by the Kepler mission, ruling out false positives in the ongoing hunt for planets like our own. The work on FINDS has led directly into the commissioning of a new spectrometer at Cerro-Tololo.