I tagged this Wired News Article (by Liat Clark) [CAT] because of the article's feline content, but in truth this is also a very interesting article charting progress in the field of artificial intelligence (intelligence generally, too).
When computer scientists at Google’s mysterious X lab built a neural network of 16,000 computer processors with one billion connections and let it browse YouTube, it did what many web users might do — it began to look for cats.
The “brain” simulation was exposed to 10 million randomly selected YouTube video thumbnails over the course of three days and, after being presented with a list of 20,000 different items, it began to recognize pictures of cats using a “deep learning” algorithm. This was despite being fed no information on distinguishing features that might help identify one.
Picking up on the most commonly occurring images featured on YouTube, the system achieved 81.7 percent accuracy in detecting human faces, 76.7 percent accuracy when identifying human body parts and 74.8 percent accuracy when identifying cats.
“Contrary to what appears to be a widely-held intuition, our experimental results reveal that it is possible to train a face detector without having to label images as containing a face or not,” the team says in its paper, Building high-level features using large scale unsupervised learning, which it will present at the International Conference on Machine Learning in Edinburgh, 26 June-1 July.
“The network is sensitive to high-level concepts such as cat faces and human bodies. Starting with these learned features, we trained it to obtain 15.8 percent accuracy in recognizing 20,000 object categories, a leap of 70 percent relative improvement over the previous state-of-the-art [networks].”
The findings — which could be useful in the development of speech and image recognition software, including translation services — are remarkably similar to the “grandmother cell” theory that says certain human neurons are programmed to identify objects considered significant. The “grandmother” neuron is a hypothetical neuron that activates every time it experiences a significant sound or sight. The concept would explain how we learn to discriminate between and identify objects and words. It is the process of learning through repetition.
“We never told it during the training, ‘This is a cat,’” Jeff Dean, the Google fellow who led the study, told the New York Times. “It basically invented the concept of a cat.”
“The idea is that instead of having teams of researchers trying to find out how to find edges, you instead throw a ton of data at the algorithm and you let the data speak and have the software automatically learn from the data,” added Andrew Ng, a computer scientist at Stanford University involved in the project. Ng has been developing algorithms for learning audio and visual data for several years at Stanford.