The Dragon's Tales linked to this Nature piece by Heidi Ledford noting the imminence of human genetic engineering. The only question is where it will occur.
Concerns over the manipulation of human embryos are nothing new. Rosario Isasi, a legal scholar at McGill University in Montreal, Canada, points to two key waves of legislation over the years: one sparked by concerns about the derivation of embryonic stem cells, which was largely deemed acceptable; the other about reproductive cloning, which was largely prohibited for safety reasons.
The current regulatory mosaic is their legacy. Tetsuya Ishii, a bioethicist at Hokkaido University in Sapporo, Japan, spent nearly a year analysing relevant legislation and guidelines in 39 countries, and found that 29 have rules that could be interpreted as restricting genome editing for clinical use (M. Araki and T. Ishii Reprod. Biol. Endocrinol. 12, 108; 2014). But the 'bans' in several of these countries — including Japan, China and India — are not legally binding. “The truth is, we have guidelines but some people never follow them,” said Qi Zhou, a developmental biologist at the Chinese Academy of Sciences Institute of Zoology in Beijing, at a meeting hosted by the US National Academy of Sciences in Washington DC last week. Ishii considers the rules in nine other countries — among them Russia and Argentina — to be “ambiguous”. The United States, he notes, prohibits federal funding for research involving human embryos, and would probably require regulatory approval for human gene editing, but does not officially ban the use of the technique in the clinic. In countries where clinical use is banned, such as France and Australia, research is usually allowed as long as it meets certain restrictions and does not attempt to generate a live birth (see 'CRISPR embryos and the law').
Many researchers long for international guidelines that, even if not enforceable, could guide national lawmakers. Developing such a framework is one of the aims of ongoing discussions; the US National Academy, for example, plans to hold an international summit in December and then produce recommendations for responsible use of the technique in 2016.
But the research has already begun, and more is coming. Scientists in China announced in April that they had used CRISPR to alter the genomes of human embryos, albeit ones incapable of producing a live baby (P. Liang et al. Protein Cell 6, 363–372; 2015). Xiao-Jiang Li, a neuroscientist at Emory University in Atlanta, Georgia, who has used the technique in monkeys, says he has heard rumours that several other Chinese laboratories are already doing such experiments. And in September, developmental biologist Kathy Niakan of the Francis Crick Institute in London applied to the UK Human Fertilisation and Embryology Authority for permission to use the technique to study errors in embryo development that can contribute to infertility and miscarriage. No one so far has declared an interest in producing live babies with edited genomes, and initial experiments would suggest that it is not yet safe. But some suspect that it is only a matter of time.