rfmcdonald: (Default)
[personal profile] rfmcdonald
Gizmodo's Frieda Klotz describes the quiet introduction of the cyborg into our contemporary world. The future is here.

Michael Bareev-Rudy never expected to have his finger implanted with a magnet. But in November 2015, the 18-year-old decided to embed a tiny magnet in his index finger at an event held in Dusseldorf, Germany. A crowd gathered to watch as a man in a smart grey suit and green surgical mask carefully sliced open the sandy-haired 18-year-old’s finger.

“After this he cuts with a scalpel on the side of my finger – yes, he cuts my finger open,” Michael recalled moments later, looking decidedly pale as he smiled nervously before the flashing cameras. After sterilising the table and numbing Michael’s finger with a local anaesthetic, “he uses – I don’t really know how to describe this tool – it was like a pen, sharp on the end with a little spoon on the top. He carved a tunnel through my finger to get the magnet inside and then he tried to put it there.” Because the magnet refused to slip easily into the young man’s finger, they had to try six times before succeeding.

Afterwards Michael’s finger was still numb, meaning that the real pain would come later. A dissolvable string remained inside, which he would need to pull out within ten days. Michael had paid €100 for the magnet and implantation. “What can I say?” he laughed, gazing at his newly transformed digit. “I was sitting there thinking for a moment, ‘Why am I doing this?’ But on the other hand, I thought it’s a great opportunity, and I think it’s kind of cool to modify your own body – and yes, of course it hurts, but this is a small price for what I get.”

Michael, who studies electrotechnics in Cologne, looks like a pretty normal guy, sporting a black T-shirt with a red alien on the front. And that’s the point: Once the realm of piercers and body modifiers, tech implantation is fast becoming the territory of software developers, students and web entrepreneurs. Magnets allow users to sense magnetic or electromagnetic fields; RFID (radio-frequency identification) or NFC (near field communication, a related technology) chips, encased in biocompatible glass, can be programmed to communicate with Android phones and other compatible devices, allowing users to unlock their phones, open doors, turn lights on and off or even buy a beer with a literal wave of the hand. The connected devices of the internet of things are a gold mine for experimentation. Analysts predict that there will be 25 billion connected objects by 2020, and this swift rise gives implant technologies a wealth of new applicability and appeal. People with such implants we call cyborgs. And this event in Dusseldorf was dubbed ‘Science + Fiction: The world’s first Cyborg-fair’.

People have these visions that this is evil. But in the real world, it’s not.

‘Cyborg’ is a loaded and attention-grabbing term, bearing associations from sci-fi novels and Hollywood, and whether it’s an entirely accurate label for these activities is up for debate. Some commentators broaden the definition to include anyone who uses artificial devices, such as computer screens or iPhones. Others prefer to narrow it. As early as 2003, in an article entitled ‘Cyborg morals, cyborg values, cyborg ethics’, Kevin Warwick, the professor who pioneered the cyborg movement in the academic sphere, described ‘cyborgs’ as being only those entities formed by a “human, machine brain/nervous system coupling” – essentially “a human whose nervous system is linked to a computer”.
Page generated Jun. 18th, 2025 10:01 pm
Powered by Dreamwidth Studios