I've been following the progress of NASA's
Dawn space probe for some time. Having visited protoplanet
Vesta in 2012, it's on track to visit
Ceres--the inner solar system's preeminent dwarf planet, coincidentally enough discovered 213 years ago today.
Blogging for the Planetary Society, Marc Rayman describes at length how the probe is being prepared for its 2015 encounter.
Starting in early February 2015, Dawn will suspend thrusting occasionally to point its camera at Ceres. The first time will be on Feb. 2, when they are 260,000 miles (420,000 kilometers) apart. To the camera's eye, designed principally for mapping from a close orbit and not for long-range observations, Ceres will appear quite small, only about 24 pixels across. But these pictures of a fuzzy little patch will be invaluable for our celestial navigators. Such "optical navigation" images will show the location of Ceres with respect to background stars, thereby helping to pin down where it and the approaching robot are relative to each other. This provides a powerful enhancement to the navigation, which generally relies on radio signals exchanged between Dawn and Earth. Each of the 10 times Dawn observes Ceres during the approach phase will help navigators refine the probe's course, so they can update the ion thrust profile to pilot the ship smoothly to its intended orbit.
Whenever the spacecraft stops to acquire images with the camera, it also will train the visible and infrared mapping spectrometer on Ceres. These early measurements will be helpful for finalizing the instrument parameters to be used for the extensive observations at closer range in subsequent mission phases.
[. . .]
When Dawn next peers at Ceres, nine days after the first time, it will be around 180,000 miles (290,000 kilometers) away, and the pictures will be marginally better than the sharpest views ever captured by the Hubble Space Telescope. By the third optical navigation session, on Feb. 21, Ceres will show noticeably more detail.
At the end of February, Dawn will take images and spectra throughout a complete Ceres rotation of just over nine hours, or one Cerean day. During that period, while about 100,000 miles (160,000 kilometers) distant, Dawn's position will not change significantly, so it will be almost as if the spacecraft hovers in place as the dwarf planet pirouettes beneath its watchful eye. Dawn will see most of the surface with a resolution twice as good as what has been achieved with Hubble. (At that point in the curving approach trajectory, the probe will be south of Ceres's equator, so it will not be able to see the high northern latitudes.) This first "rotation characterization," or RC1, not only provides the first (near-complete) look at the surface, but it may also suggest to insightful readers what will occur during the RC3 orbit phase.
There will be six more imaging sessions before the end of the approach phase, with Ceres growing larger in the camera's view each time. When the second complete rotation characterization, RC2, is conducted on March 16, the resolution will be four times better than Hubble's pictures. The last photos, to be collected on March 24, will reveal features seven times smaller than could be discerned with the powerful space observatory.